Pearson
 Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced
Level in Physics (WPH14) Paper 01 Physics
Further Mechanics, Fields and Particles

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P69437A
Publications Code WPH14_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022
https://xtremepape.rs/

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
1	The only correct answer is \mathbf{D} A is not correct because 8 is the number of protons B is not correct because 8 is the number of protons C is not correct because 8 is the number of protons	1
2	The only correct answer is \mathbf{D} A is not correct because this is the mass of an electron B is not correct because this is the mass of an electron C is not correct because this is the charge of a proton	1
3	The only correct answer is \mathbf{A} B is not correct because $p^{2} / 2 m=0.5 \mathrm{~J}$ C is not correct because $p^{2} / 2 m=0.5 \mathrm{~J}$ D is not correct because $p^{2} / 2 m=0.5 \mathrm{~J}$	1
4	The only correct answer is \mathbf{B} A is not correct because momentum is conserved and E_{k} decreases C is not correct because momentum is conserved and E_{k} decreases D is not correct because momentum is conserved and E_{k} decreases	1
5	The only correct answer is \mathbf{D} A is not correct because the process described is thermionic emission B is not correct because the process described is thermionic emission C is not correct because the process described is thermionic emission	1
6	The only correct answer is \mathbf{B} A is not correct because this would have no effect on the deflection C is not correct because this would increase the deflection D is not correct because this would increase the deflection	1
7	The only correct answer is \mathbf{A} B is not correct because force is out of page on $Q R$ C is not correct because force is zero on $R S$ D is not correct because force is into page on $S P$	1
8	The only correct answer is \mathbf{C} A is not correct because this was a correct conclusion B is not correct because this was a correct conclusion D is not correct because this was a correct conclusion	1
9	The only correct answer is \mathbf{D} A is not correct because this would not change the energy B is not correct because this would not change the energy for one revolution C is not correct because this would not change the energy	1
10	The only correct answer is \mathbf{B} A is not correct because if the time of orbit stays constant and the radius of orbit increases then the speed must increase C is not correct because if the time of orbit stays constant and the radius of orbit increases then the speed must increase D is not correct because the angular velocity stays constant	1

Question Number	Answer	Mark
$\mathbf{1 1}$	at least 4 radial straight lines	(1)
	distributed equally	$\mathbf{3}$
	arrow on at least one line pointing towards centre	(1)

Question Number	Answer		Mark
12	The blades exert a downward force on the air The air exerts an equal upwards force on the blades/helicopter Or By Newton's $3{ }^{\text {rd }}$ law there is an equal upwards force This upwards force equals the weight of helicopter The resultant force is zero, so (by Newton's $1^{\text {st }}$ or $2^{\text {nd }}$ law) there is no acceleration (and the helicopter maintains a constant height)	(1) (1) (1) (1)	4
	Total for question 12		4

Question Number	Answer		Mark
13ai	Use of trigonometry appropriate for determination of angle Use of $W=m g$ Resolves tension in thread vertically or horizontally Or draw triangle of forces Force of repulsion $=1.2 \times 10^{-3}(\mathrm{~N})$ Example of calculation $\sin \theta=13 / 122$ Angle of thread to vertical $\theta=6.12^{\circ}$ $T \cos 6.12^{\circ}=1.1 \times 10^{-3} \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}$ Tension in thread $=0.0109 \mathrm{~N}$ Force of repulsion $=0.0109 \sin 6.12^{\circ}=1.16 \times 10^{-3} \mathrm{~N}$	(1) (1) (1) (1)	4
13aii	Use of $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$ (accept use of $F=\frac{k Q_{1} Q_{2}}{r^{2}}$) $Q=1.7 \times 10^{-7}(\mathrm{C})$ (allow ecf from ai) Example of calculation $\begin{aligned} & 1.16 \times 10^{-3} \mathrm{~N}=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \frac{Q^{2}}{0.47^{2} \mathrm{~m}^{2}} \\ & Q=1.69 \times 10^{-7} \mathrm{C} \end{aligned}$	(1) (1)	2
13b	Use of $V=\frac{Q}{4 \pi \varepsilon_{0} r}\left(\right.$ accept use of $\left.V=\frac{k Q}{r}\right)$ $V=5100 \mathrm{~V}$ (allow ecf from aii) Example of calculation $V=8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \frac{(-) 1.7 \times 10^{-7} \mathrm{C}}{0.30 \mathrm{~m}}=(-) 5094 \mathrm{~V}$	(1) (1)	2
	Total for question 13		8

Question Number	Answer		Mark
14a	Use of $I=V / R$ $I=0.15 \mathrm{~mA}$ which is consistent (with the value on the graph) Example of calculation $I=5.0 \mathrm{~V} / 33 \mathrm{k} \Omega=1.5 \times 10^{-4} \mathrm{~A}=0.15 \mathrm{~mA}$	(1) (1)	2
14b	The current would vary with time in the same way as on ammeter A_{1} Because (current is same everywhere) in a series circuit	(1) (1)	2
14c	Either Takes two corresponding values of I and t from graph Use of $\ln I=\ln I_{0}-t / R C$ $C=2.27 \times 10^{-4} \mathrm{~F}\left(2.0 \times 10^{-4} \mathrm{~F}-2.3 \times 10^{-4} \mathrm{~F}\right)$ Or Draws initial tangent to curve and determines t intercept: T (0.65-0.75 s) Use of $T=R C$ $C=2.2 \times 10^{-4} \mathrm{~F}\left(2.0 \times 10^{-4} \mathrm{~F}-2.3 \times 10^{-4} \mathrm{~F}\right)$ Or Read value of t at which $I=I_{0} / e(0.56 \mathrm{~A}, 0.7 \mathrm{~s})$ Use of $T=R C$ $C=2.1 \times 10^{-4} \mathrm{~F}\left(2.0 \times 10^{-4} \mathrm{~F}-2.3 \times 10^{-4} \mathrm{~F}\right)$ Example of calculation eg $I=0.04 \mathrm{~mA}$ and $t=10 \mathrm{~s}$ $\ln 0.04=\ln 0.152-\frac{10 \mathrm{~s}}{C \times 33 \mathrm{k}}$ $C=2.27 \times 10^{-4} \mathrm{~F}$ range: $2.0 \times 10^{-4} \mathrm{~F}-2.3 \times 10^{-4} \mathrm{~F}$	(1) (1)	3
14d	Attempt to determine an area under the curve $Q=1.1 \times 10^{-3} \mathrm{C}\left(1.0 \times 10^{-3} \mathrm{C} \text { to } 1.2 \times 10^{-3} \mathrm{C}\right)$ Or Use of $Q=C V$ with 5.0 V $Q=1.1 \times 10^{-3} \mathrm{C} \text { (allow ecf from (c)) }$	(1) (1) (1) (1)	2
14e	Use of $W=\frac{Q V}{2}$ or $W=\frac{1}{2} C V^{2}$ or $W=Q^{2} / 2 C$ $W=2.8 \times 10^{-3} \mathrm{~J}$ (allow ecf from 14 c and 14 d) Example of calculation $W=1.1 \times 10^{-3} \mathrm{C} \times 5 \mathrm{~V} / 2=2.8 \times 10^{-3} \mathrm{~J}$	(1) (1)	2
	Total for question 14		11

Question Number	Answer	Mark
15a	Correct vector diagram showing velocity change (Small angle, so) $\delta \theta=\delta v / v$ Use of $\delta \theta / \delta t=\omega$ and $v=r \omega$ Use of $\delta v / \delta t=a$ Algebra to show $a=v^{2} / r$ Example of derivation Sv Small angle, so $\delta \theta=\delta v / v$ $\begin{align*} & \delta \theta=\omega \delta t \\ & \delta \theta=v \delta t / r \\ & v \delta t / r=\delta v / v \\ & \delta v / \delta t=v^{2} / r \tag{1} \end{align*}$	5
15b	Use of velocity $=f \times 2 \pi r$ Use of $a=v^{2} / r$ $\begin{equation*} a=39 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{equation*}$ Or Use of $\omega=2 \pi f$ Use of $a=\omega^{2} / r$ $a=39 \mathrm{~m} \mathrm{~s}^{-2}$ Example of calculation $\begin{aligned} & v=1.3 \mathrm{~s}^{-1} \times 2 \pi \times 0.58 \mathrm{~m}=4.74 \mathrm{~m} \mathrm{~s}^{-1} \\ & a=4.74^{2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2} / 0.58 \mathrm{~m}=38.7 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	3
15c	Tension in cord is force on hand Centripetal force is constant Weight of ball is added to tension at top Weight is subtracted from tension at bottom so force on hand varies and child correct	4

	OR Tension in cord is force on hand Centripetal force is constant Weight of ball is subtracted from tension at bottom Weight is added to tension at top so force on hand varies and child correct Example of discussion At top of motion $W+T=$ centripetal force Or at bottom of motion $T-W=$ centripetal force So T varies from (centripetal force $-W$) to (centripetal force $+W$)	(1) (1) (1) (1)	
	Total for question 15		12

	The following table shows how the marks should be awarded for structure and lines of reasoning.		
		Number of marks awarded for structure of answer and sustained line of reasoning	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	
	Answer is partially structured with some linkages and lines of reasoning	1	
	Answer has no linkages between points and is unstructured	0	
	Guidance on how the mark scheme sho content should be added to the mark for answer with five indicative marking poi some linkages and lines of reasoning sc content and 1 mark for partial structure reasoning). If there are no linkages betw marking points would yield an overall s content and no marks for linkages). Indicative content: Energy: IC1 As (Rest) mass-energy of proto mass-energy of omega and kaon +k Or (Total) mass-energy conserved IC2 Incoming K^{-}had high kinetic e IC3 some of this initial kinetic energy omega particle (- mass of proton) $\mathrm{IC} 4 \Delta E=\Delta m c^{2}$ momentum: IC5 momentum of $\mathrm{K}^{-}=$sum of x co Or vector sum of momentum of K^{+} Or an attempt to sketch a triangle of eg \qquad IC6 y component of K^{+}equals y com Or all vectors correctly labelled	plied: The mark for indicative reasoning. For example, an ch is partially structured with arks (3 marks for indicative e linkages and lines of ints, the same five indicative 3 marks (3 marks for indicative aon + Initial $E_{k}=($ rest $)$ nergies of both particles erted to mass of the ts of $\mathrm{K}^{+}+\Omega^{-}$ momentum of K^{-} s Ω^{-}	
	Total for question 16		14

Question Number	Answer		Mark
17a	It is a lepton It is a fundamental particle $\mathbf{O r}$ second generation	(1) (1)	2
17b	negative pion muon anti-neutrino	(1) (1)	2
17c	Use of $\Delta E=\mathrm{c}^{2} \Delta m$ Divide mass of muon by mass of electron Or multiplies the mass of an electron by 200 Mass of muon is 207 times that of an electron so true statement Or 200 times electron mass is $1.82 \times 10^{-28} \mathrm{~kg}$ which is just under $1.88 \times 10^{-28} \mathrm{~kg}$ so it is correct Example of calculation $\begin{aligned} & \text { mass }=\frac{106 \mathrm{MeV} / \mathrm{c}^{2} \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{JeV}^{-1}}{\left(3 \times 10^{8}\right)^{2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}=1.88 \times 10^{-28} \mathrm{~kg} \\ & \text { mass }=\frac{1.88 \times 10^{-28} \mathrm{~kg}}{9.11 \times 10^{-31} \mathrm{~kg}} \\ & \text { mass }=207 \text { times that of an electron } \end{aligned}$	(1) (1) (1)	3
17di	A unit of energy is GeV Or a unit of mass is $\mathrm{GeV} / \mathrm{c}^{2}$ The unit of momentum is the same as the unit of energy/velocity so GeV divided by $\mathrm{c}=\mathrm{GeV} / \mathrm{c}$ Or The unit of momentum is the same as the unit of mass \times velocity so $\mathrm{GeV} / \mathrm{c}^{2} \times \mathrm{c}=\mathrm{GeV} / \mathrm{c}$	(1) (1)	2
17dii	Use of Circumference $=2 \pi r$ Use of $r=p / B Q$ Show that a momentum of $1.65 \times 10^{-18} \mathrm{Ns}$ is consistent with the correct radius (7.11 m) by determination of p, r, B or Q and statement that it is correct Example of calculation $\begin{aligned} & r=44.7 \mathrm{~m} / 2 \pi=7.11 \mathrm{~m} \\ & r=\frac{1.65 \times 10^{-18} \mathrm{~N} \mathrm{~s}}{1.45 \mathrm{~T} \times 1.6 \times 10^{-19} \mathrm{C}}=7.11 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
17diii	muons travelling close to speed of light relativistic effect on particle lifetime	(1) (1)	2
	Total for question 17		14

Question Number	Answer		Mark
18a	Flux linkage weber / Wb	(1) (1)	2
18b	Evidence of attempt to determine maximum gradient of graph Use of $\Delta B / \Delta t$ use of area of coil $=\pi r^{2}$ use of $\emptyset=B A$ Use of $\varepsilon=\frac{d(N \varnothing)}{d t}$ $\mathcal{E}=1.4 \mathrm{~V}$ range 1.2 to 1.6 V Example of calculation gradient $=0.6 \mathrm{~T} / 0.006 \mathrm{~s}=100 \mathrm{~T} \mathrm{~s}^{-1}$ Area of coil $=\pi(0.003 \mathrm{~m})^{2}=2.83 \times 10^{-5} \mathrm{~m}^{2}$ $\varepsilon=500 \times 100 \mathrm{~T} \mathrm{~s}^{-1} \times 2.83 \times 10^{-5} \mathrm{~m}^{2}$ $\mathcal{E}=1.4 \mathrm{~V}$	(1) (1) (1) (1) (1) (1)	6
18c	There is a change in the magnetic flux (linkage with aluminium disc) Or disc is cutting magnetic field/flux So an e.m.f. is induced Leads to a current (in the disc) (accept eddy current) Force acts on the disc, as there is a current in a magnetic field (accept reference to motor effect, FLHR or $F=B I l$ if current in disc has been mentioned) Or field due to current in disc interacting with field due to magnet to cause force on disc According to Lenz's law Or the direction of e.m.f./current is such to oppose (the cause of) the change in flux The disc moves to reduce this change (the same direction as the magnet) so correct suggestion	(1) (1) (1) (1) (1) (1)	6
	Total for question 18		14

